Control AWS Access and Permissions using Custom Permissions and Policies
This product is in preview and is subject to change. If you’re interested in learning more about this offering, contact Teradata Support. |
Overview
Configure policies with the necessary permissions to provide access to the AWS resources. If the account deploying workspace service does not have sufficient IAM permissions to create IAM roles or IAM policies, your organization administrator can define the roles and policies and pass them to the workspace service template.
This article contains sample IAM policies required for a new IAM role.
Configure these policies in the AWS console in Security & Identity > Identity & Access Management > Create Policy. For detailed instructions, see Creating roles and attaching policies (console) - AWS Identity and Access Management.
workspaces-with-iam-role-permissions.json
The following JSON sample includes permissions needed to create AI Unlimited instances and grants workspace service the permissions to create cluster-specific IAM roles and policies for the engine.
{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"iam:PassRole",
"iam:AddRoleToInstanceProfile",
"iam:CreateInstanceProfile",
"iam:CreateRole",
"iam:DeleteInstanceProfile",
"iam:DeleteRole",
"iam:DeleteRolePolicy",
"iam:GetInstanceProfile",
"iam:GetRole",
"iam:GetRolePolicy",
"iam:ListAttachedRolePolicies",
"iam:ListInstanceProfilesForRole",
"iam:ListRolePolicies",
"iam:PutRolePolicy",
"iam:RemoveRoleFromInstanceProfile",
"iam:TagRole",
"iam:TagInstanceProfile",
"ec2:TerminateInstances",
"ec2:RunInstances",
"ec2:RevokeSecurityGroupEgress",
"ec2:ModifyInstanceAttribute",
"ec2:ImportKeyPair",
"ec2:DescribeVpcs",
"ec2:DescribeVolumes",
"ec2:DescribeTags",
"ec2:DescribeSubnets",
"ec2:DescribeSecurityGroups",
"ec2:DescribePlacementGroups",
"ec2:DescribeNetworkInterfaces",
"ec2:DescribeLaunchTemplates",
"ec2:DescribeLaunchTemplateVersions",
"ec2:DescribeKeyPairs",
"ec2:DescribeInstanceTypes",
"ec2:DescribeInstanceTypeOfferings",
"ec2:DescribeInstances",
"ec2:DescribeInstanceAttribute",
"ec2:DescribeImages",
"ec2:DescribeAccountAttributes",
"ec2:DeleteSecurityGroup",
"ec2:DeletePlacementGroup",
"ec2:DeleteLaunchTemplate",
"ec2:DeleteKeyPair",
"ec2:CreateTags",
"ec2:CreateSecurityGroup",
"ec2:CreatePlacementGroup",
"ec2:CreateLaunchTemplateVersion",
"ec2:CreateLaunchTemplate",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:AuthorizeSecurityGroupEgress",
"secretsmanager:CreateSecret",
"secretsmanager:DeleteSecret",
"secretsmanager:DescribeSecret",
"secretsmanager:GetResourcePolicy",
"secretsmanager:GetSecretValue",
"secretsmanager:PutSecretValue",
"secretsmanager:TagResource"
],
"Resource": "*",
"Effect": "Allow"
}
]
}
workspaces-without-iam-role-permissions.json
The following JSON sample includes the permissions needed to create AI Unlimited instances. If your account restrictions do not allow workspace service to create IAM roles and policies, then you must provide an IAM role with a policy to pass to the engine. In this case, you can use the following modified workspace service policy, which does not include permissions to create IAM roles or IAM policies.
{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"iam:PassRole",
"iam:AddRoleToInstanceProfile",
"iam:CreateInstanceProfile",
"iam:DeleteInstanceProfile",
"iam:GetInstanceProfile",
"iam:GetRole",
"iam:GetRolePolicy",
"iam:ListAttachedRolePolicies",
"iam:ListInstanceProfilesForRole",
"iam:ListRolePolicies",
"iam:PutRolePolicy",
"iam:RemoveRoleFromInstanceProfile",
"iam:TagRole",
"iam:TagInstanceProfile",
"ec2:TerminateInstances",
"ec2:RunInstances",
"ec2:RevokeSecurityGroupEgress",
"ec2:ModifyInstanceAttribute",
"ec2:ImportKeyPair",
"ec2:DescribeVpcs",
"ec2:DescribeVolumes",
"ec2:DescribeTags",
"ec2:DescribeSubnets",
"ec2:DescribeSecurityGroups",
"ec2:DescribePlacementGroups",
"ec2:DescribeNetworkInterfaces",
"ec2:DescribeLaunchTemplates",
"ec2:DescribeLaunchTemplateVersions",
"ec2:DescribeKeyPairs",
"ec2:DescribeInstanceTypes",
"ec2:DescribeInstanceTypeOfferings",
"ec2:DescribeInstances",
"ec2:DescribeInstanceAttribute",
"ec2:DescribeImages",
"ec2:DescribeAccountAttributes",
"ec2:DeleteSecurityGroup",
"ec2:DeletePlacementGroup",
"ec2:DeleteLaunchTemplate",
"ec2:DeleteKeyPair",
"ec2:CreateTags",
"ec2:CreateSecurityGroup",
"ec2:CreatePlacementGroup",
"ec2:CreateLaunchTemplateVersion",
"ec2:CreateLaunchTemplate",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:AuthorizeSecurityGroupEgress",
"secretsmanager:CreateSecret",
"secretsmanager:DeleteSecret",
"secretsmanager:DescribeSecret",
"secretsmanager:GetResourcePolicy",
"secretsmanager:GetSecretValue",
"secretsmanager:PutSecretValue",
"secretsmanager:TagResource"
],
"Resource": "*",
"Effect": "Allow"
}
]
}
session-manager.json
The following JSON sample includes the permissions needed to interact with the AWS Session Manager. If you use AWS Session Manager to connect to the instance, you must attach this policy to the IAM role.
{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"ssm:DescribeAssociation",
"ssm:GetDeployablePatchSnapshotForInstance",
"ssm:GetDocument",
"ssm:DescribeDocument",
"ssm:GetManifest",
"ssm:ListAssociations",
"ssm:ListInstanceAssociations",
"ssm:PutInventory",
"ssm:PutComplianceItems",
"ssm:PutConfigurePackageResult",
"ssm:UpdateAssociationStatus",
"ssm:UpdateInstanceAssociationStatus",
"ssm:UpdateInstanceInformation"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"ssmmessages:CreateControlChannel",
"ssmmessages:CreateDataChannel",
"ssmmessages:OpenControlChannel",
"ssmmessages:OpenDataChannel"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"ec2messages:AcknowledgeMessage",
"ec2messages:DeleteMessage",
"ec2messages:FailMessage",
"ec2messages:GetEndpoint",
"ec2messages:GetMessages",
"ec2messages:SendReply"
],
"Resource": "*",
"Effect": "Allow"
}
]
}
unlimited-engine.json
If you pass the Teradata AI Unlimited IAM role to a new engine instead of allowing the workspace service to create the cluster-specific role, you can use the following JSON sample as a starting point to create your policy.
{
"Version": "2012-10-17",
"Statement": [
{
"Action": "secretsmanager:GetSecretValue",
"Effect": "Allow",
"Resource": [
"arn:aws:secretsmanager:<REGION>:<ACCOUNT_ID>:secret:compute-engine/*"
]
}
]
}
When workspace service creates policies for the engine, they are restricted as follows:
"Resource": ["arn:aws:secretsmanager:<REGION>:<ACCOUNT_ID>:secret:compute-engine/<CLUSTER_NAME>/<SECRET_NAME>"]
If you provide an IAM role and policy, then you can’t predict the cluster name, and to avoid the situation, you can use wildcarding in the replacement policy, such as:
"arn:aws:secretsmanager:<REGION>:<ACCOUNT_ID>:secret:compute-engine/*"
or
"arn:aws:secretsmanager:<REGION>:111111111111:secret:compute-engine/*"
or
"arn:aws:secretsmanager:us-west-2:111111111111:secret:compute-engine/*"
Use persistent volumes on AWS
With Teradata AI Unlimited, you can redeploy your engine for which the state needs to be persisted regardless of container, pod, or node crashes or terminations. This feature requires persistent storage, that is, storage that lives beyond the lifetime of the container, pod, or node. Teradata AI Unlimited uses the instance root volume of the instance to save data in the JupyterLab /userdata folder, workspace service database, and configuration files. The data persists if you shut down, restart, or snapshot and relaunch the instance. However, if the instance is terminated, your JupyterLab data and workspace service database are lost, and this could pose problems if running on-the-spot instances, which may be removed without warning. If you want a highly persistent instance, enable the UsePersistentVolume
parameter to move the JupyterLab data and workspace service database to a separate volume.
The following recommended persistent volume flow remounts the volume and retains the data:
-
Create a new deployment with
UsePersistentVolume
set as New andPersistentVolumeDeletionPolicy
set as Retain. -
In the stack outputs, note the volume-id for future use.
-
Configure and use the instance until the instance is terminated.
-
On the next deployment, use the following settings:
-
UsePersistentVolume
set as New -
PersistentVolumeDeletionPolicy
set as Retain -
ExistingPersistentVolumeId
set to the volume-id from the previous deployment
-
You can relaunch the template with the same configuration whenever you need to recreate the instance with the earlier data.
Next Steps
-
Get started with Teradata AI Unlimited by running a simple workflow. See Run a Sample Workload in JupyterLab Using Teradata AI Unlimited.
-
Interested in learning how Teradata AI Unlimited can help you with real-life use cases? Coming soon! Keep watching this space for the GitHub link.
If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. |